SIXTH EDITION

_ESSENTIAL
ATLAB

for Enc lneers and Scientists

_ BRIAN H. HAHN
LT. VALENTINE

g

[L] a &
e y
(N

Eissential MATLAB

for Engineers and Scientists

Essential MATLAB
for Engineers and Scientists
Sixth Edition

Brian H. Hahn
Daniel T. Valentine

= AMSTERDAM e BOSTON e HEIDELBERG ¢ LONDON
. NEW YORK e OXFORD e PARIS e SAN DIEGO
£ SAN FRANCISCO e SINGAPORE e SYDNEY e TOKYO

o= TRl Y
ELSEVIER Academic Press is an imprint of Elsevier

Academic Press is an imprint of Elsevier

50 Hampshire Street, 5th Floor, Cambridge, MA 02139, United States

525 B Street, Suite 1800, San Diego, CA 92101-4495, United States

The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, United Kingdom
125, London Wall, EC2Y, 5AS, United Kingdom

Copyright © 2017, 2013, 2010 Daniel T. Valentine. Published by Elsevier Ltd. All rights reserved.
Copyright © 2007, 2006, 2002 Brian D. Hahn and Daniel T. Valentine. Published by Elsevier Ltd.

MATLAB® is a trademark of The MathWorks, Inc. and is used with permission.

The MathWorks does not warrant the accuracy of the text or exercises in this book.

This book’s use or discussion of MATLAB® software or related products does not constitute endorsement
or sponsorship by The MathWorks of a particular pedagogical approach or particular use of the
MATLAB® software.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior
written permission of the publisher.

Permissions may be sought directly from Elsevier’s Science & Technology Rights Department in Oxford,
UK: phone: (+44) 1865 843830, fax: (+44) 1865 853333, E-mail: permissions@elsevier.com. You may
also complete your request online via the Elsevier homepage (http://www.elsevier.com), by selecting
“Support & Contact” then “Copyright and Permission” and then “Obtaining Permissions.”

Library of Congress Cataloging-in-Publication Data
A catalog record for this book is available from the Library of Congress.

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

ISBN: 978-0-08-100877-5

For information on all Academic Press publications
visit our website at https://www.elsevierdirect.com

aa Working together
_| 48 o grow libraries in
asvier | Book A4 Jeveloping countries

www.elsevier.com ¢ www.bookaid.org

Publisher: Todd Green

Acquisition Editor: Stephen Merken

Editorial Project Manager: Nate McFadden
Production Project Manager: Stalin Viswanathan

Designer: Matthew Limbert

Typeset by VTeX

mailto:permissions@elsevier.com
http://www.elsevier.com
https://www.elsevierdirect.com

Preface

The main reason for a sixth edition of Essential MATLAB for Engineers and Scien-
tists is to keep up with MATLAB, now in its latest version (9.0 Version R2016a).
Like the previous editions, this one presents MATLAB as a problem-solving
tool for professionals in science and engineering, as well as students in those
fields, who have no prior knowledge of computer programming.

In keeping with the late Brian D. Hahn's objectives in previous editions, the
sixth edition adopts an informal, tutorial style for its “teach-yourself” ap-
proach, which invites readers to experiment with MATLAB as a way of discov-
ering how it works. It assumes that readers have never used this tool in their
technical problem solving.

MATLAB, which stands for “Matrix Laboratory,” is based on the concept of
the matrix. Because readers will be unfamiliar with matrices, ideas and con-
structs are developed gradually, as the context requires. The primary audience
for Essential MATLAB is scientists and engineers, and for that reason certain ex-
amples require some first-year college math, particularly in Part I1I. However,
these examples are self-contained and can be skipped without detracting from
the development of readers’ programming skills.

MATLAB can be used in two distinct modes. One, in keeping the modern-age
craving for instant gratification, offers immediate execution of statements (or
groups of statements) in the Command Window. The other, for the more pa-
tient, offers conventional programming by means of script files. Both modes
are put to good use here: The former encouraging cut and paste to take full
advantage of Windows' interactive environment. The latter stressing program-
ming principles and algorithm development through structure plans.

Although most of MATLAB's basic (“essential”) features are covered, this book
is neither an exhaustive nor a systematic reference. This would not be in keep-
ing with its informal style. For example, constructs such as for and if are not
always treated, initially, in their general form, as is common in many texts, but
are gradually introduced in discussions where they fit naturally. Even so, they

XV

are treated thoroughly here, unlike in other texts that deal with them only su-
perficially. For the curious, helpful syntax and function quick references can be
found in the appendices.

The following list contains other highlights of Essential MATLAB for Engineers
and Scientists, Sixth Edition:

Warnings of the many pitfalls that await the unwary beginner

Numerous examples taken from science and engineering (simulation, pop-
ulation modeling, numerical methods) as well as business and everyday
life

An emphasis on programming style to produce clear, readable code
Comprehensive chapter summaries

Chapter exercises (answers and solutions to many of which are given in an
appendix)

A thorough, instructive index

Essential MATLAB is meant to be used in conjunction with the MATLAB soft-
ware. The reader is expected to have the software at hand in order to work
through the exercises and thus discover how MATLAB does what it is com-
manded to do. Learning any tool is possible only through hands-on expe-
rience. This is particularly true with computing tools, which produce correct
answers only when the commands they are given and the accompanying data
input are correct and accurate.

ACKNOWLEDGMENTS

I would like to thank Mary, Clara, Zoe Rae and Zach T. for their support and
encouragement. I dedicate the sixth edition of Essential MATLAB for Engineers
and Scientists to them.

Daniel T. Valentine

Essentials

Part 1 concerns those aspects of MATLAB that you need to know in order to
come to grips with MATLAB's essentials and those of technical computing. Be-
cause this book is a tutorial, you are encouraged to use MATLAB extensively
while you go through the text.

CHAPTER 1

Introduction

THE OBJECTIVES OF THIS CHAPTER ARE:

» To enable you to use some simple MATLAB commands from the
Command Window.

» To examine various MATLAB desktop and editing features.

» To learn some of the new features of the MATLAB R2016a Desktop.

m To learn to write scripts in the Editor and Run them from the Editor.

» To learn some of the new features associated with the tabs (in particular,
the PUBLISH and APPS features).

MATLAB is a powerful technical computing system for handling scientific and
engineering calculations. The name MATLAB stands for Matrix Laboratory, be-
cause the system was designed to make matrix computations particularly easy.
A matrix is an array of numbers organized in m rows and n columns. An exam-
ple is the following m x n =2 x 3 array:

1 3 5
A:<246>

Any one of the elements in a matrix can be plucked out by using the row
and column indices that identify its location. The elements in this example
are plucked out as follows: A(1,1) =1, A(1,2) =3, A(1,3) =5, A(2,1) =2,
A(2,2) =4, A(2,3) = 6. The first index identifies the row number counted from
top to bottom; the second index is the column number counted from left to
right. This is the convention used in MATLAB to locate information in an array.
A computer is useful because it can do numerous computations quickly, so
operating on large numerical data sets listed in tables as arrays or matrices of
rows and columns is quite efficient.

This book assumes that you have never used a computer before to do the sort
of scientific calculations that MATLAB handles, but are able to find your way

Essential MATLAB for Engineers and Scientists. DOI:10.1016/B978-0-08-100877-5.00002-5
Copyright © 2017 Daniel T. Valentine. Published by Elsevier Ltd. All rights reserved.

CONTENTS

Using MATLAB 5

Arithmetic 5
Variables.....cccccoeeeunn. 7
Mathematical

functions......ccceeeuunnee. 8
Functions and

commands.........eeee.... 8
Vectors..eeeeeeeeee... 9
Linear equations 11

Tutorials and demos 12

The desktop 13
Using the Editor and

running a script....... 13
Help, publish and
VIEW Leiiiiiieeieenieeeane 16

Symbolics and the
MuPAD notebook

Additional features.. 23

Sample program. 25

Cut and paste 25
Saving a program:
script files...cccceenueene 27

Current directory....... 28
Running a script from
the current folder
browser....cccocueeeenne. 29
A program in action. 29

CHAPTER 1: Introduction

Summary.............

Exercises..............

Supplementary

material

around a computer keyboard and know your operating system (e.g., Windows,
UNIX or MAC-OS). The only other computer-related skill you will need is
some very basic text editing.

One of the many things you will like about MATLAB (and that distinguishes
it from many other computer programming systems, such as C++ and Java) is
that you can use it interactively. This means you type some commands at the
special MATLAB prompt and get results immediately. The problems solved in
this way can be very simple, like finding a square root, or very complicated, like
finding the solution to a system of differential equations. For many technical
problems, you enter only one or two commands—MATLAB does most of the
work for you.

There are three essential requirements for successful MATLAB applications:

You must learn the exact rules for writing MATLAB statements and using
MATLARB utilities.

You must know the mathematics associated with the problem you want to
solve.

You must develop a logical plan of attack—the algorithm—for solving a
particular problem.

This chapter is devoted mainly to the first requirement: learning some basic
MATLAB rules. Computer programming is a precise science (some would also
say an art); you have to enter statements in precisely the right way. There is a
saying among computer programmers: Garbage in, garbage out. It means that if
you give MATLAB a garbage instruction, you will get a garbage result.

With experience, you will be able to design, develop and implement compu-
tational and graphical tools to do relatively complex science and engineering
problems. You will be able to adjust the look of MATLAB, modify the way you
interact with it, and develop a toolbox of your own that helps you solve prob-
lems of interest. In other words, you can, with significant experience, customize
your MATLAB working environment.

As you learn the basics of MATLAB and, for that matter, any other computer
tool, remember that applications do nothing randomly. Therefore, as you use
MATLAB, observe and study all responses from the command-line operations
that you implement, to learn what this tool does and does not do. To begin
an investigation into the capabilities of MATLAB, we will do relatively simple
problems that we know the answers because we are evaluating the tool and its
capabilities. This is always the first step. As you learn about MATLAB, you are
also going to learn about programming, (1) to create your own computational
tools, and (2) to appreciate the difficulties involved in the design of efficient,
robust and accurate computational and graphical tools (i.e.,, computer pro-
grams).

In the rest of this chapter we will look at some simple examples. Don't be
concerned about understanding exactly what is happening. Understanding will
come with the work you need to do in later chapters. It is very important for
you to practice with MATLAB to learn how it works. Once you have grasped
the basic rules in this chapter, you will be prepared to master many of those
presented in the next chapter and in the Help files provided with MATLAB.
This will help you go on to solve more interesting and substantial problems.
In the last section of this chapter you will take a quick tour of the MATLAB
desktop.

1.1 USING MATLAB

Either MATLAB must be installed on your computer or you must have access
to a network where it is available. Throughout this book the latest version at
the time of writing is assumed (Version R2016a).

To start from Windows, double-click the MATLAB icon on your Windows desk-
top. To start from UNIX, type matlab at the operating system prompt. To start
from MAC-OS open X11 (i.e., open an X-terminal window), then type mat-
lab at the prompt. The MATLAB desktop opens as shown in Figure 1.1. The
window in the desktop that concerns us for now is the Command Window,
where the special >> prompt appears. This prompt means that MATLAB is
waiting for a command. You can quit at any time with one of the following
ways:

Click the X (close box) in the upper right-hand corner of the MATLAB desk-
top.

Type quit or exit at the Command Window prompt followed by pressing
the ‘enter’ key.

Starting MATLAB automatically creates a folder named MATLAB in the user’s
Documents Folder. This feature is quite convenient because it is the default
working folder. It is in this folder that anything saved from the Command
Window will be saved. Now you can experiment with MATLAB in the Com-
mand Window. If necessary, make the Command Window active by placing
the cursor in the Command Window and left-clicking the mouse button any-
where inside its border.

1.1.1 Arithmetic

Since we have experience doing arithmetic, we want to examine if MATLAB
does it correctly. This is a required step to gain confidence in any tool and in
our ability to use it.

Type 2+3 after the >> prompt, followed by Enter (press the Enter key) as
indicated by <Enter>:

>> 2+3 <Enter>

1.1 Using MATLAB -

- CHAPTER 1: Introduction

1 Y e Il [T i New Varisble. Analyze Code {©) Preferences ()
B os O grame & B =2 2 ’a) @ gy
g X Ca) a i

= el S oo (5 Setpatn a8
New New Open (I_|compare Import Save -/ Simuink Layout Add-Ons Heb =) Request Support
Seipt v v Data Workspace (/) Clear Workspace v (/7 Clear Commands ~ ~ [l paratel ~ ~ -
¢ @A » C: » Users » dvalenti » Document ts » MATLAB
Current Folder ® | Comman d Window ® | Workspace

New to MATLAB? See resources for Getting Started. X | Name « Value

«
(Ol -]

Command History ®
A=- 5/2/2016 10:5...

Change.m (Script) v

Prob 47 in Essentials

FIGURE 1.1 MATLAB desktop illustrating the Home task bar (version 2016a).

Commands are only carried out when you enter them. The answer in this case
is, of course, 5. Next try

>> 3-2 <Enter>
>> 2*3 <Enter>
>> 1/2 <Enter>
>> 23 <Enter>
>> 2\11 <Enter>

What about (1)/(2) and (2)~(3)? Can you figure out what the symbols *,
/, and ~ mean? Yes, they are multiplication, division and exponentiation. The
backslash means the denominator is to the left of the symbol and the numer-
ator is to the right; the result for the last command is 5.5. This operation is
equivalent to 11/2.

Now enter the following commands:

>> 2 .* 3 <Enter>
>> 1./ 2 <Enter>
>> 2."3 <Enter>

A period in front of the *, /, and -, respectively, does not change the results
because the multiplication, division, and exponentiation is done with single
numbers. (An explanation for the need for these symbols is provided later
when we deal with arrays of numbers.)

Here are hints on creating and editing command lines:

The line with the >> prompt is called the command line.

You can edit a MATLAB command before pressing Enter by using various
combinations of the Backspace, Left-arrow, Right-arrow, and Del keys.
This helpful feature is called command-line editing.

You can select (and edit) commands you have entered using Up-arrow and
Down-arrow. Remember to press Enter to have the command carried out
(i.e., to run or to execute the command).

MATLAB has a useful editing feature called smart recall. Just type the first few
characters of the command you want to recall. For example, type the charac-
ters 2+ and press the Up-arrow key—this recalls the most recent command
starting with 2x.

How do you think MATLAB would handle 0/1 and 1/0? Try it. If you insist
on using oo in a calculation, which you may legitimately wish to do, type the
symbol Inf (short for infinity). Try 13+Inf and 29/Inf.

Another special value that you may meet is NaN, which stands for Not-a-
Number. It is the answer to calculations like 0/0.

1.1.2 Variables

Now we will assign values to variables to do arithmetic operations with the
variables. First enter the command (statement in programming jargon) a = 2.
The MATLAB command line should look like this:

>> a =2 <Enter>

The a is a variable. This statement assigns the value of 2 to it. (Note that this
value is displayed immediately after the statement is executed.) Now try enter-
ing the statement a = a + 7 followed on a new line by a = a * 10. Do you
agree with the final value of a? Do we agree that it is 907

Now enter the statement
>> b = 3; <Enter>

The semicolon (;) prevents the value of b from being displayed. However, b
still has the value 3, as you can see by entering without a semicolon:

>> b <Enter>

Assign any values you like to two variables x and y. Now see if you can assign
the sum of x and y to a third variable z in a single statement. One way of doing
this is

>> x=2;y=3; <Enter>

>> 7z =x+y <Enter>

1.1 Using MATLAB

- CHAPTER 1: Introduction

Notice that, in addition to doing the arithmetic with variables with assigned
values, several commands separated by semicolons (or commas) can be put
on one line.

1.1.3 Mathematical functions

MATLAB has all of the usual mathematical functions found on a scientific-
electronic calculator, like sin, cos, and log (meaning the natural logarithm).
See Appendix B.5 for many more examples.

Find /7 with the command sqrt (pi). The answer should be 1.7725. Note
that MATLAB knows the value of pi because it is one of its many built-in
functions.

Trigonometric functions like sin(x) expect the argument x to be in radians.
Multiply degrees by 7 /180 to get radians. For example, use MATLAB to cal-
culate sin(90°). The answer should be 1 (sin(90*pi/180)).

The exponential function e* is computed in MATLAB as exp(x). Use this
information to find e and 1/e (2.7183 and 0.3679).

Because of the numerous built-in functions like pi or sin, care must be taken
in the naming of user-defined variables. Names should not duplicate those
of built-in functions without good reason. This problem can be illustrated as
follows:

>> pi =4 <Enter>
>> sqrt(pi) <Enter>
>> whos <Enter>
>> clear pi <Enter>
>> whos <Enter>
>> sqrt(pi) <Enter>
>> clear <Enter>
>> whos <Enter>

Note that clear executed by itself clears all local variables in the workspace;
>>clear pi clears the locally defined variable pi. In other words, if you de-
cide to redefine a built-in function or command, the new value is used! The
command whos is executed to determine the list of local variables or com-
mands presently in the workspace. The first execution of the command pi=4
in the above example displays your redefinition of the built-in pi: a 1-by-1 (or
1x1) double array, which means this data type was created when pi was assigned
a number (you will learn more about other data types later, as we proceed in
our investigation of MATLAB).

1.1.4 Functions and commands

MATLAB has numerous general functions. Try date and calendar for starters.
It also has numerous commands, such as clc (for clear command window). help
is one you will use a lot (see below). The difference between functions and

commands is that functions usually return with a value (e.g., the date), while
commands tend to change the environment in some way (e.g., clearing the
screen or saving some statements to the workspace).

1.1.5 Vectors

Variables such as a and b that were used in Section 1.1.2 above are called scalars;
they are single-valued. MATLAB also handles vectors (generally referred to as
arrays), which are the key to many of its powerful features. The easiest way
of defining a vector where the elements (components) increase by the same
amount is with a statement like

>>x=0:10; <Enter>

That is a colon (:) between the 0 and the 10. There is no need to leave a space
on either side of it, except to make it more readable. Enter x to check that x
is a vector; it is a row vector—consisting of 1 row and 11 columns. Type the
following command to verify that this is the case:

>> size(x) <Enter>

Part of the real power of MATLAB is illustrated by the fact that other vectors
can now be defined (or created) in terms of the just defined vector x. Try

>>vy=2.*x <Enter>
>> w =y ./ X <Enter>

and
>>y = sin(x) <Enter>

(no semicolons). Note that the first command line creates a vector y by multi-
plying each element of x by the factor 2. The second command line is an array
operation, creating a vector w by taking each element of y and dividing it by
the corresponding element of x. Since each element of y is two times the cor-
responding element of x, the vector w is a row vector of 11 elements all equal
to 2. Finally, z is a vector with sin(x) as its elements.

To draw a reasonably nice graph of sin(x), simply enter the following com-
mands:

>>x=0:0.1:10; <Enter>
>> z = sin(x); <Enter>
>> plot(x,z), grid <Enter>

The graph appears in a separate figure window. To draw the graph of the sine
function illustrated in Figure 1.2 replace the last line above with

>> plot(x,y/-rs’,LineWidth’,2,MarkerEdgeColor’,k’,MarkerSize’,5),grid
<Enter>

1.1 Using MATLAB -

m CHAPTER 1: Introduction

sin(x)

FIGURE 1.2 Figure window.

>> xlabel(’ x "), ylabel(’ sin(x) ") <Enter>
>> whitebg('y’) <Enter>

You can select the Command Window or figure windows by clicking anywhere
inside them. The Windows pull-down menus can be used in any of them.

Note that the first command line above has three numbers after the equal sign.
When three numbers are separated by two colons in this way, the middle num-
ber is the increment. The increment of 0.1 was selected to give a reasonably
smooth graph. The command grid following the comma in the last command
line adds a grid to the graph.

Modifying the plot function as illustrated above, of the many options available
within this function, four were selected. A comma was added after the variable
y followed by "-1s”. This selects a solid red line (-r) to connect the points at which
the sine is computed; they are surrounded by square (s) markers in the figure.
The line width is increased to 2 and the marker edge color is black (k) with
size 5. Axis labels and the background color were changed with the statements
following the plot command. (Additional changes in background color, object
colors etc. can be made with the figure properties editor; it can be found in the
pull-down menu under Edit in the figure toolbar. Many of the colors in the
figures in this book were modified with the figure-editing tools.)

If you want to see more cycles of the sine graph, use command-line editing to
change sin(x) to sin(2*x).

Try drawing the graph of tan(x) over the same domain. You may find aspects
of your graph surprising. To help examine this function you can improve the
graph by using the command axis ([0 10 -10 10]1) as follows:

>>x = 1:0.1:10; <Enter>
>> z = tan(x); <Enter>
>> plot(x,z),axis([0 10 -10 10]) <Enter>

An alternative way to examine mathematical functions graphically is to use the
following command:

>> ezplot('tan(x)’) <Enter>

The apostrophes around the function tan(x) are important in the ezplot
command. Note that the default domain of x in ezplot is not 0 to 10.

A useful Command Window editing feature is tab completion: Type the first
few letters of a MATLAB name and then press Tab. If the name is unique, it is
automatically completed. If it is not unique, press Tab a second time to see all
the possibilities. Try by typing ta at the command line followed by Tab twice.
1.1.6 Linear equations

Systems of linear equations are very important in engineering and scientific
analysis. A simple example is finding the solution to two simultaneous equa-
tions:

x+2y=4

2x —y=3

Here are two approaches to the solution.

Matrix method. Type the following commands (exactly as they are):

>>a = [1 2; 2 -1]; <Enter >
>>Db = [4; 3]; <Enter >
>> x = a\b <Enter >

The result is

ie, x=2,y=1.
Built-in solve function. Type the following commands (exactly as they are):

>> [x,y] = solve(’x+2xy=4’,’2*x - y=3’) <Enter >
>> whos <Enter >

>> x = double(x), y=double(y) <Enter >

>> whos <Enter >

1.1 Using MATLAB _

m CHAPTER 1: Introduction

@ Help - o X ‘
@D Y @ [MATLABEamples | + | BEODBO|~
Documentation e Q
= NTENTS Close
< Al Products MATLAB Examples
< MATLAB © . Getting Started More Examples
MATLAB Examples
% Getting Started with MATLAB (7 min) ﬁ Video
>
Getting Started
Language Fundamentals
Mathematics
s 3 Working in The Development Environment (5 min, 21 sec] K§ Video

Programming Scripts and Functions
Data Import and Export

App Building ﬁ Using the Live Editor (5 min) &‘5 Video

Advanced Software Development
New Features Videos

22 Introduction to the Live Editor &‘ Live Script

~Language Fundamentals

FIGURE 1.3 The Help documentation on MATLAB Examples.

The function double converts x and y from symbolic objects (another data type
in MATLAB) to double arrays (i.e., the numerical-variable data type associated
with an assigned number).

To check your results, after executing either approach, type the following com-
mands (exactly as they are):

>>x + 2%y % should give ans = 4 <Enter >
>> 2%x - y % should give ans = 3 <Enter >

The % symbol is a flag that indicates all information to the right is not part of
the command but a comment. (We will examine the need for comments when
we learn to develop coded programs of command lines later on.)

1.1.7 Tutorials and demos

If you want a spectacular sample of what MATLAB has to offer, type the com-
mand demo on the command line. After entering this command the Help
documentation is opened at MATLAB Examples (see Figure 1.3). Left-click on
“Getting Started”. This points you to the list of tutorials and demonstrations of
MATLAB applications that are at your disposal. Click on any of the other top-
ics to learn more about the wealth of capabilities of MATLAB. You may wish to
review the tutorials appropriate to the topics you are examining as part of your
technical computing needs. Scroll down to the “New Features Video” to learn
more about the Desktop and other new features, some of which are introduced
next.

4\ MATLAB R20162 - academic use = m] x |

HOME PLOTS APPS (2R RN secarch Documentation PB

e 2, News Variable Analyze Code T Preferences 32 > Yl
L= GF U [Frnaries & B =2 i ’a) | (5 @ S @ {3 Communty
L Open Variable £ Run and Time [SetPath

New New Open [||Compare Import Save Simuink Layout Add-Ons Help = Request Support

i - - Data Workspace () Clear Workspace v |’ Clear Commands ~. ~ Il paratel ~ - bk

FILE VARIASLE conE SIMULINK RESOURCES

s | » C: » Users » Clara » Documents » MATLAB » ~ 12|

Current Folder ®

FIGURE 1.4 New Desktop Toolbar on MATLAB 2016a.

1.2 THE DESKTOP

A very useful feature of MATLAB R2016a is the fact that when you first open it,
it creates the folder named MATLAB (if it does not already exist) in your Doc-
uments folder. The first time it does this, there are no items in the folder and,
hence, the Current Folder panel will be empty. This new folder in your Doc-
uments is the default working folder where all the files your create are saved.
The location of this folder is given in the first toolbar above the Command
Window. The location is C: \Users\Clara\Documents\MATLAB. This format of
the location was determined by pointing and left-clicking the mouse in the
line just above the Command Window.

Let us examine the Desktop from the top down. On the left side of the top
line you should see the name of the version of MATLAB running. In this case
it is MATLAB R2016a. On the right side of the top line are three buttons. They
are the underscore button, which allows you to minimize the size of the Desk-
top window, the rectangle button, which allows you to maximize the size of
the Desktop, and the x button, which allows you to close MATLAB (see Fig-
ure 1.4).

On the next line of the Desktop there are three tabs on the left side. The first
tap is most forward in the figure and, hence, the Home toolbar is displayed
(the tabs and the toolbars associated with the tabs are the main new features
of this release of MATLAB). If you are already familiar with a previous release
of MATLAB, you will find that these new features enhance significantly the
use of MATLAB. In addition, all previously developed tools operate exactly as
they did in previous releases of MATLAB. The other two tabs are PLOTS and
APPS. These features allow you to access tools within MATLAB by pointing and
clicking and, hence, enhance the utilization of tools and toolboxes available
within MATLAB. In addition, the APPS environment allows the user to create
their own applications (or APPS).

1.2.1 Using the Editor and running a script

Point and click on the New Script icon on the left most side of the Home
toolbar. Doing this opens the editor in the center of the Desktop as shown in

1.2 The desktop _

CHAPTER 1: Introduction

4\ MATLAB R20162 - academic use = o x |
HOME PLOTS APPS EDTOR PUBLISH VEW. BHL RSB ISza‘ch Documentation ,OB
e =] [Find Files Insert [|~ b= = L
L H < 38 & £0 £ [> [@ (2] Run section QP
|l compare v GoTo v Comment % sz %y
New Open Save i S Breakpoints Run Runand [l Advance Runand
- - v (Pt v ({ Find ¥ Indent [| ~ ~ nce Time.
FiLE NAVIGATE T BREAKFOINTS RUN
esEA » C: » Users » Clara » Documents » MATLAB » v 2|
Current Folder [OM 7 Editor - Untitled [OR S Workspace ®
Untitled +] Name Value
a1 O
@ html
@ html Examples
@ | MEs27
i calct.mn
) ch6_1m
#) conem i€ L |
7. CrossProduct.mn Command History ®
earthimage.m SammrTo
#) EcamplePubl.m AP
KarmanSource.m &2
earthimage.m (Script) v
Command Window ® |
Earth picture . |
|
~| Click and drag to move the document tabs... script n 1 Col 1

FIGURE 1.5 Editor opened in default location; it is in the center of the Desktop.

Figure 1.5. Note that three new tabs appear and that the tab that is visible is
the Editor tab that is connected with the Editor. The other two tabs are Publish
and View. The latter are useful when creating notebooks or other documents
connected with your technical computing work. The application of these tools
will be illustrated by an example later in this text.

Let us first consider using the Editor. Type into the Editor the following script:

% Example of one of the matrix inversion methods available in MATLAB
clear;clc
% Let us consider the following arbitrarily selected matrix:

A =magic(3)
% Let us evaluate its inverse as follows:
AT = inv(A)

% Let us check that it is an inverse:
IPredicted = A * AI
% This is the exact unitary matrix:

IM = eye(3)
% The is the difference between the exact and predict unitary
% matrix:
difference = IPredicted - IM
for m = 1:3
for n = 1:3

if difference(m,n) < eps;
IPredicted(m,n) = IM(m,n);
end
end
end

IPredicted
IPredicted == IM

Then click on the Run button just under the tab named View. The first time
the script is executed you are asked to name the file. The name used in this
example is ExA1_1.m. If all lines are typed correctly (except the lines beginning
with the symbol '%’, because they are comments that have nothing to do with
the sequence of commands in the script except that they help the reader un-
derstand what the script does), what shows up in the Command Window is as
follows:

A=
8 1 6
3 5 7
4 9 2
AT =
0.1472 -0.1444 0.0639
-0.0611 0.0222 0.1056
-0.0194 0.1889 -0.1028
IPredicted =
1.0000 0 -0.0000
-0.0000 1.0000 0
0.0000 0 1.0000
M =
1 0 0
0 1 0
0 0 1
difference =
1.0e-15 *
0 0 -0.1110
-0.0278 0 0
0.0694 0 0
IPredicted =
1 0 0
0 1 0
0 0 1
ans =
1 1 1
1 1 1
1 1 1

The IPredicted matrix is supposed to be the identity matrix, IM. The matrix
IPredicted was determined by multiplying the matrix A by its numerically
computed inverse, AL. The last print out of IPredicted is a modification of
the original matrix; it was changed to the elements of the IM matrix if the
difference between a predicted and an actual element of IM was less than

1.2 The desktop _

m CHAPTER 1: Introduction

4\ MATLAB R20162 - academic use = a X
HOME PLOTS APPS EDTOR PUBLISH VEW 2O RSIENTN)] search Documentation pn
L o~ = Find Files. & o Insert [= e 5| = I
w0 d LE &~ 2.5 b = [3]Runsecton (B
(i) Compare v) GoTo v Comment % 2 %J
New Open Save =~ Breakpoints Run Runand [Advance Runand
v v v (Pt v (| Find ~ indent 5] w3 |5 - v Advance Time.
===y NAVIGATE o BREAKPOINTS RUN
€= (E || » C» Users » Clara » Documents » MATLAB » M.

[CEY Workspace

Current Folder (Ol W Editor - C:\Users\Clara\Documents\MATLAB\EXAT_1.m

Value
[81.6:357:49.2]
[0.1472,-0.1444,0.063.,

Name

atrix: [ans
—| £ difference

£ M
- AI = inv(a) ~| EH 1Predicted
% Let us check that it is inverse £ m
< - IPredicted = A * Hin
7 mn el
#) ch_t.m 2
) conem 105
7 CrossProductmn ; dritcary < >|
l_l):::‘ir‘n;ge‘m 13 - difference = IPredicted - IM C""f"“a"f‘H‘s““’AY‘ ©
%) ExamplePubl.m 14 - for m = 1:3 B s £
%) KarmanSourcem 151 for n = 1:3 ExAl_1
#) MexHat.m 16 — if difference(m,n) < eps;
#) Series:m vl - IPredicted(m,n) = IM(m,n);
Details v |8 - end
19 = end
20 - lena
oF i IPredicted
. 22 - IPredicted == I "2
Select a file to view details % 5
Command Window ®
~
x> 5

ln 3 Col 1

FIGURE 1.6 Sample script created and executed in the first example of this section.

eps = 2.2204e — 16. Since the result is identical to the identity matrix, this
shows that the inverse was computed correctly (at least to within the compu-
tational error of the computing environment, i.e., 0 < eps). This conclusion is
a result of the fact that the ans in the above example produced the logical re-
sult of 1 (or true) for all entries in the adjusted IPredicted matrix as logically
compared with the corresponding entries in IM.

At this point in the exercise the Desktop looks like Figure 1.6. The name of
the file is ExA1_1.m. It appears in the Current Folder and it also appears in the
Command History. Note that the Workspace is populated with the variables
created by this script.

This concludes the introduction of the most important tools needed for
most of the exercises in Essential MATLAB (i.e., in this text). In the next sec-
tion we examine an example of some of the other new features of MATLAB
R2016a.

1.2.2 Help, publish and view

Publish is an easy way to create notebooks or other documents in html format.
The conversion of the information typed into an M-file is published into a doc-
ument that looks like the new Help environment. To open the help documents
go to the top of the Desktop to the question mark. Left click on the question
mark 7. The Help window opens up. Left click on the topic “MATLAB” to open
up the window illustrated in Figure 1.7. This also illustrates the new format

= CONTENTS Close
< AlProducts MATLAB
The Language of Technical Computing
<MATLAB L]
Millions of engineers and scientists worldwide use MATLAB® to analyze and Examples
Getting Started with MATLAB design the systems and products our world. The matrix-based Functions
Language Fundamentals MATLAB language is the world's most natural way to express computational S g
mathematics. Built-in graphics make it easy to visualize and gain insights from
Mathematics data. The desktop invites ; , and PDF Documentation
Graphics discovery. These MATLAB tools and capabilities are all rigorously tested and

Programming Scripts and Functions desigricd to work togemion

MATLAB helps you take your ideas beyond the desktop. You can run your
analyses on larger data sets, and scale up to clusters and clouds. MATLAB code
can be integrated with other languages, enabling you to deploy algorithms and
Advanced Software Di within web, and systems.

Desktop Environment

Data Import and Export
App Building

Supported Hardware 2
e Getting Started

Learn the basics of MATLAB

Language Fundamentals
Syntax, operators, data types, array indexing and manipulation

Mathematics
Linear algebra, basic statistics,

and integrals, Fourier and other

FIGURE 1.7 lllustration of one of the pages in the online documentation for MATLAB.

of the searchable documentation available within MATLAB R2016a. We want
to compare this documentation with the kind you can PUBLISH yourself. To
illustrate how easy it is to create documents like the MATLAB documents, let
us consider the following simple example.

Click the New Script button to open up the editor (or type edit after the com-
mand prompt in the Command Window followed by tapping the enter key).
The Editor tab is in the most forward position on the main taskbar. Place the
cursor on PUBLISH and left click on the mouse. This brings the PUBLISH
toolbar forward. Left click Section with Title. Replace SECTION TITLE with
PUBLISHING example. Next, replace DESCRIPTIVE TEXT with

hh
% This is an example to illustrate how easy it is to create a document
% in the PUBLISH environment.

% (1) This is an illustration of a formula created with a LaTeX command:

Next, click on ¥ Inline LaTeX located in the “Insert Inline Markup” group.
This leads to the addition of the equation $x~2+e~{\pi i}$. Following this
equation add the text shown in the final script file shown below that ends
with “clicked:”. This is followed by a blank line and a command script; this
command script is included to illustrate how MATLAB commands can be in-
corporated into published documents.

1.2 The desktop

m CHAPTER 1: Introduction

hh
% This is an example to illustrate how easy it is to create a document
% in the PUBLISH environment.

% (1) This is an illustration of a formula created with a LaTeX command:

hh

% $x~2+e~{\pi i}$

yA

% (2) This is an illustration of how you can incorporate a MATLAB script
% in the document that is run when the Publish button below and to the
% right of View is clicked:

% Earth picture

load earth

image (X); colormap(map);
axis image

The final step is to left-click on Publish, which is just to the right and below
View. The first window to appear is the one asking you to save the M-file. The
name used in this example is ExamplePubl.m. After it appears in the Current
Folder it is executed. A folder named html is automatically created and it con-
tains the html document just created. The document is illustrated in Figure 1.8.

Finally, the VIEW tab brings up a toolbar that allows you to change the con-
figuration of the Editor window. From the authors point of view, the default
Editor environment is fine as is especially for users who are beginning to use
MATLARB for technical computing. Customizing your working environment is
certainly possible in MATLAB. However, it is useful to learn how to deal with
the default environment before deciding what needs to be changed to help
satisfy your own requirements for using MATLAB.

1.2.3 Symbolics and the MuPAD notebook APP

The Symbolic Math Toolbox is a useful tool to help you do symbolic mathe-
matical analysis. It has been made much more accessible through the appli-
cation called the MuPAD Notebook APP. To open this APP start by a left-click
on the APPS tab in the second line from the top on the desktop shown in
Figure 1.4. This operation brings the APPS toolbar forward as illustrated in Fig-
ure 1.9. Left-click on the MuPAD Notebook APP. The window in Figure 1.10
is the notebook environment that opens up. The left bracket on the upper left
side of the white note pad is where the commands are typed. The panel on the
right side of the pad is the Command Bar. It provides easy access to many of the
commands needed to do mathematics including the manipulation and evalu-
ation of mathematical expressions as well as plotting graphs. The two toolbars
above the pad provide useful utilities to enhance your usage of MuPAD. Mov-
ing the cursor over the items on the second line tells you what each button

w
| Untitled2 ¢ | + BODBEO ~
@ 2 & | @ Location: file:///C:/Users/Clara/Documents/MATLAB/html/Untitled2.html v
This is an example to illustrate how easy itis to create a in the PUBLISH

(1) This is an illustration of a formula created with a LaTeX command:

This is an example to illustrate how easy itis to create a inthe PUBLISH

(1) This is an illustration of a formula created with a LaTeX command:

FIGURE 1.8 Sample document created in the Publish environment.

4\ MATLAB R20162 - academic use = o X |
APPS R R CH RN scorch Documentation }JE
a ~ @ @8 & @ 65 & .
Gethore hstal Package Opfimzaon MuPAD SignalAnaysis CurveFiting PDTuner System image Instrument SimBiology MATLAB Coder Appication
Apps App App Notebook identification Acquisition Control Compier
FiLE aePs
«pEHAE » C: » Users » Clara » Documents » MATLAB » v 2|
Current Folder [GM Command Window [O}f Workspace ®

Name Feos> | Name Value

Examples
GUI Examples
html

html Examples

FIGURE 1.9 The APPS toolbar on the Desktop.

does. The first line requires moving the cursor over them and a left-click on the
mouse to open the pull-down menu. This toolbar is common to all windows
of the MATLAB technical computing environment. Let us examine a simple
example.

Left-click in the note pad just above the left bracket. At this location you can
start typing text (i.e., your notes on the mathematical work you are about to
begin in this notebook). Figure 1.11 illustrates a simple example of taking the
derivative of a function and then integrating the result to learn more about the
relationship between differentiation and integration in the calculus. This note-

1.2 The desktop _

m CHAPTER 1: Introduction

|f/ Notebook1 - MuPAD - o X

File Edit View Navigation Inset Format Notebook Window Help

RSBy) W | w % @ @ K? [Generic Monospace vlu v| 8 1] Y xg »
Command Bar x

[l = BB,

I g7, Tt
{125 T,
2R a=b& a=b

a+b nt x> fx)
- - -

. ¥
General Math,
Plot Commands.,
FIGURE 1.10 The MuPAD window or notebook.
i/ Notebookl* - MuPAD Ela] =]
Il‘,l LI E E -513 Q TC: 11; m @ Q? Generic Serif v| il v
+ T ; " 4 e d Bar X
Differentiation and integration Firr—
Sy
ox x=a v v
In this note we are going to examine a couple of the commands available to us in the Ifex f=f Iaf
Command Bar. Let us begin by taking the derivative of a function. Aleft click on the item at the % % ¥
top left side of the Command Bar results in: diff(#f, #x). This command is used as follows: {= ,_OL f=p L
[diff (x*n, x)
i LT a=b. a=b
nx
- ath oml x> f@)
Next, let us integrate the above result as follows. Left click on the red Pl 2 a ;
[sina (5 o {x i £
in the above tool bar to get: 2| &=, @.Q mks
[int (n*x”* (n-1), x)
{ 0 if n=0 N\
X* if n=0

General Math.,
Another approach is to define the derivative as follows:

3 Plot Commands .
81 := diff(x”*n,x)
nxt!
[s2 := int(s1,x)
0 if n=0
X" if n=0 B
Mem31 MB, TOs Outp & INS

FIGURE 1.11 The MuPAD notebook Calc1.mn.

book was saved under the name Calcl.mn. Note the file extension (‘*.mn") for
MATLAB notebooks created in MuPAD. Double-left clicking on the file with
this filename in the Command Folder panel opens this notebook (as it is illus-

trated in the figure). The details of this example are also provided in the figure.
They are as follows:

Differentiation and integration

In this note we are going to examine a few of the mathematical commands
available to us and listed in the Command Bar. Let us begin with taking the
derivative of a function f. With the cursor placed on the upper left most sym-
bol, a left-click on the mouse produces the following result: diff (#f, #x).
The # sign is a place holder at which input is required. The next step is to point
to the right of the left bracket below and left-click to place the note pad cursor
at this location. Then click on the command of interest in the Command Bar.
Change #f to x" and #x to x. Then hit enter to execute the command. The result
is:

[diff(x"n, x)

nxn—l

Next, let us integrate this result. First let us save the result under the name S1
as follows:
[S1 := diff(x"n, x)

nxn—l

Now, let us integrate. Left-click on this operation in the Command Bar to get:
int(#f, #x). Replace #f with S1 and #x with x. Thus,

[S2 := int(S1,x)
0 if n=0
x" if n#0

Hence, integration is, as expected, the inverse of differentiation. The only issue,
if any, that you must keep in mind is that the constants of integration are set
to zero. If you need to explicitly carry them along in your analysis, then you
must add a constant to the results at this step.

REMARK: Help is available through the help documentation. The help can be
accessed by a left click on the blue circle with the question mark in the toolbar
just above this pad.

A second example is the graphics capabilities in MuPAD. There are other plot-
ting utilities within MATLAB that allow you to examine functions graphically
and quickly. The MuPAD environment is particularly well suited for this kind
of investigation. Suppose you are reading a technical article and you come
across two interesting functions and you want to have an idea as to what they
look like. Let us examine two examples. One is the sech?(x) function which
plays an important role in nonlinear wave theory. The second is the complete

1.2 The desktop _

m CHAPTER 1: Introduction

| plot (ellipticK (m))

FIGURE 1.12 lllustration of MuPAD graphics.

elliptic integral of the first kind, viz.,

/2
1
Km)= | ———dp
)
5 V1 —m2sin*0

This integral plays an important role in potential theory. What do these func-
tions look like? The MuPAD notebook in Figure 1.12 illustrates the shapes
of these functions. More on these functions among other functions can be
examined in the help documentation and in the references cited in the help
documentation.

This concludes this brief introduction to an APP and a brief introduction to
the capabilities of the Symbolic Math toolbox.

/;/0 \\Q\

0.2 < / -

0 ‘\“\\\\\' :“‘“\\\’ :' i
:Zi \‘;, .'I!"““‘\\ \" /

30 40

20 30
20

10

FIGURE 1.13 The Mexican hat.

1.2.4 Other APPS

There are a number of other APPS available from MathWorks. In addition,
there is a capability for you to create your own APPS. Hence, if there is any-
thing that we learn from our first experiences with MATLAB is that there is a
lot to learn (a lifelong experience of learning) because of the wealth of tech-
nology incorporated in this technical computing environment. The fact that
you can develop your own toolboxes, your own APPS and you can customize
your working environment (desktop arrangement, color backgrounds, fonts,
graphical user interfaces and so on) provides real opportunities and useful ex-
perience in creating designs, creating useful tools and documenting your work.

1.2.5 Additional features

MATLAB has other good things. For example, you can generate a 10-by-10 (or
10 x 10) magic square by executing the command magic (10), where the rows,
columns, and main diagonal add up to the same value. Try it. In general, an
n x n magic square has a row and column sum of n(n* + 1)/2.

You can even get a contour plot of the elements of a magic square. MATLAB
pretends that the elements in the square are heights above sea level of points on
a map, and draws the contour lines. contour (magic(32)) looks interesting.

If you want to see the famous Mexican hat (Figure 1.13), enter the following
four lines (be careful not to make any typing errors):

>> [x y] = meshgrid(-8 : 0.5 : 8); <Enter>
>>r = sqrt(x.”2 + y.”2) + eps; <Enter>
>>z = sin(r) ./ r; <Enter>

1.2 The desktop _

CHAPTER 1: Introduction

>> mesh(z) ; <Enter>

surf (z) generates a faceted (tiled) view of the surface. surfc(z) or meshc(z)
draws a 2D contour plot under the surface. The command

>> surf(z), shading flat <Enter>
produces a nice picture by removing the grid lines.

The following animation is an extension of the Mexican hat graphic in Fig-
ure 1.13. It uses a for loop that repeats the calculation from n=—3 ton=3
in increments of 0.05. It begins with a for n=—3:0.05:3 command and
ends with an end command and is one of the most important constructs in
programming. The execution of the commands between the for and end state-
ments repeat 121 times in this example. The pause (0.05) puts a time delay
of 0.05 seconds in the for loop to slow the animation down, so the picture
changes every 0.05 seconds until the end of the computation.

>> [x y]=meshgrid(-8:0.5:8); <Enter>

>> r=sqrt(x."2+y."2)+eps; <Enter>

>> for n=-3:0.05:3; <Enter>

>> z=sin(r.*n)./r; <Enter>

>> surf(z), view(-37, 38), axis([0,40,0,40,-4,4]); <Enter>
>> pause(0.05) <Enter>

>> end <Enter>

You can examine sound with MATLAB in any number of ways. One way is to
listen to the signal. If your PC has a speaker, try

>> load handel <Enter>
>> sound(y,Fs) <Enter>

for a snatch of Handel’s Hallelujah Chorus. For different sounds try loading
chirp, gong, laughter, splat, and train. You have to run sound(y,Fs) for
each one.

If you want to see a view of the Earth from space, try

>> load earth <Enter>
>> image(X); colormap(map) <Enter>
>> axis image <Enter>

To enter the matrix presented at the beginning of this chapter into MATLAB,
use the following command:

>>A =[135; 2 4 6] <Enter>

On the next line after the command prompt, type A(2,3) to pluck the number
from the second row, third column.

